Surface plasmon resonance sensing of Ebola virus: a biological threat

Abstract
Here, different monoclonal antibodies (mAb1, mAb2 and mAb3) of Ebola virus were screened in a real-time and label-free manner using surface plasmon resonance (SPR) to select an appropriate antibody for biosensor applications against a biological warfare agent. For this purpose, a gold SPR chip was modified with 4-mercaptobenzoic acid (4-MBA), and modification was confirmed by FTIR-ATR and EIS. The 4-MBA-modified gold SPR chip was used for immobilization of the recombinant nucleoprotein of Ebola (EBOV-rNP), and the interactions of mAb1, mAb2 and mAb3 were then investigated to determine the best mAb based on the affinity constant (K-D), expressed as equilibrium dissociation constant. K-D values of 809 nM, 350 pM and 52 pM were found for the interaction of mAb1, mAb2 and mAb3 of Ebola with the immobilized EBOV-rNP, respectively, thus reflecting the high affinity of mAb3. This was confirmed by ELISA results. The thermodynamic parameters (Delta G, Delta H and Delta S) for the interaction between mAb3 and EBOV-rNP were also determined, which revealed that the interaction was spontaneous, endothermic and driven by entropy. The SPR limit of detection of EBOV-rNP with mAb3 was 0.5 pg ml(-1), showing mAb3 to be the best high-affinity antibody in our study. This study has opened up new possibilities for SPR screening of different monoclonal antibodies of BWA through the convergence of materials science and optical techniques.