Space charge and octupole driven resonance trapping observed at the CERN Proton Synchrotron

Abstract
The combined effect of space charge and nonlinear resonance on beam loss and emittance was measured in a benchmarking experiment over a 1.2 s long flat bottom at 1.4 GeV kinetic energy in the presence of a single controllable octupole. By lowering the working point towards the resonance, a gradual transition from a loss-free core emittance blowup to a regime dominated by continuous loss was found. We compare the observation with 3D simulations based on a new analytical space charge model and obtain good agreement in the emittance blowup regime. Our explanation is in terms of the synchrotron oscillation, which causes a periodic tune modulation due to space charge, and leads to trapping and detrapping on the resonance islands. For working points very close to the resonance this induces a beam halo with large radius. The underlying dynamics is studied in detail, and it is claimed that the predicted halo in conjunction with a reduced dynamic aperture for the real machine lattice is the source of the loss observed in the experiment.