Abstract
A simple and efficient algorithm is presented, using configuration space, to plan collision-free motions for general manipulators. An implementation of the algorithm for manipulators made up of revolute joints is also presented. The configuration-space obstacles for an n degree-of-freedom manipulator are approximated by sets of n - 1- dimensional slices, recursively built up from one-dimensional slices. This obstacle representation leads to an efficient approximation of the free space outside of the configuration-space obstacles.

This publication has 12 references indexed in Scilit: