Importance of Insoluble-Bound Phenolics to Antioxidant Properties of Wheat

Abstract
Two commercial samples of soft (70% Canadian Eastern soft red spring and 30% Canadian Eastern soft white winter) and hard (90% Canadian western hard red spring and 10% Canadian Eastern hard red winter) wheats were used to obtain different milling fractions. Phenolics extracted belonged to free, soluble esters and insoluble-bound fractions. Soluble esters of phenolics and insoluble-bound phenolics were extracted into diethyl ether after alkaline hydrolysis of samples. The content of phenolics was determined using Folin−Ciocalteu's reagent and expressed as ferulic acid equivalents (FAE). The antioxidant activity of phenolic fractions was evaluated using Trolox equivalent antioxidant capacity, 2,2-diphenyl-1-picrylhydrazyl radical scavenging, reducing power, oxygen radical absorbance capacity, inhibition of oxidation of human low-density lipoprotein cholesterol and DNA, Rancimat, inhibition of photochemilumenescence, and iron(II) chelation activity. The bound phenolic content in the bran fraction was 11.3 ± 0.13 and 12.2 ± 0.15 mg FAE/g defatted material for hard and soft wheats, respectively. The corresponding values for flour were 0.33 ± 0.01 and 0.46 ± 0.02 mg FAE/g defatted sample. The bound phenolic content of hard and soft whole wheats was 2.1 (±0.004 or ±0.005) mg FAE/g defatted material. The free phenolic content ranged from 0.14 ± 0.004 to 0.98 ± 0.05 mg FAE/g defatted milling fractions of hard and soft wheats examined. The contribution of bound phenolics to the total phenolic content was significantly higher than that of free and esterified fractions. In wheat, phenolic compounds were concentrated mainly in the bran tissues. In the numerous in vitro antioxidant assays carried out, the bound phenolic fraction demonstrated a significantly higher antioxidant capacity than free and esterified phenolics. Thus, inclusion of bound phenolics in studies related to quantification and antioxidant activity evaluation of grains and cereals is essential. Keywords: Alkaline hydrolysis; insoluble-bound phenolics; antioxidant activity; photochemiluminiscence; Rancimat; oxidation of LDL and DNA; iron chelation; phenolic acids; wheat and cereals