Abstract
In a recent study, we localized a discrete area in the ventrolateral pontine brainstem of squirrel monkeys, which seems to play a role in vocal pattern generation of frequency-modulated vocalizations. The present study compares the neuronal activity of this area with that of three motoneuron pools involved in phonation, namely the trigeminal motor nucleus, facial nucleus, and nucleus ambiguus. The experiments were performed in freely moving squirrel monkeys (Saimiri sciureus) during spontaneous vocal communication, using a telemetric single-unit recording technique. We found vocalization-related activity in all motoneuron pools recorded. Each of them, however, showed a specific profile of activity properties with respect to call types uttered, syllable structure, and pre-onset time. Different activity profiles were also found for neurons showing purely vocalization-correlated activity, vocalization- and mastication-correlated activity, and vocalization- and respiration-correlated activity. By comparing the activity properties of the proposed vocal pattern generator with the three motoneuron pools, we show that the pontine vocalization area is, in fact, able to control each of the three motoneuron pools during frequency-modulated vocalizations. The present study thus supports the existence of a vocal pattern generator for frequency-modulated call types in the ventrolateral pontine brainstem.