Evaluation of a Second-Generation Ultra-Fast Energy-Resolved ASIC for Photon-Counting Spectral CT

Abstract
A second-generation ultra-fast energy-resolved application specific integrated circuit (ASIC) has been developed for photon-counting spectral computed tomography (CT). The energy resolution, threshold dispersion and gain of the ASIC were characterized with synchrotron radiation at Diamond Light Source. The standard deviation of threshold offsets at zero keV is 0.89 keV. An RMS energy resolution of 1.09 keV has been demonstrated for 15 keV photon energy at a count rate of 40 kcps, and it deteriorates at a rate of 0.29 keV/Mcps with the increase of output cout rate. The count rate performance of the ASIC has also been evaluated with 120 kV polychromatic x-rays produced by a tungsten anode tube and the results are presented.

This publication has 13 references indexed in Scilit: