Variational calculations on a quantum well in an electric field

Abstract
We present variational calculations of the eigenstates in an isolated-quantum-well structure subjected to an external electric field. At weak fields a quadratic Stark shift is found whose magnitude depends strongly on the finite well depth. In addition, the electric field induces a spatial shift of the particle wave function along or opposite to the field direction, depending on the sign of the particle mass. This field-induced spatial separation of conduction and valence electrons in GaAs quantum wells decreases the overlap between their associated wave functions, leading to a reduction of interband recombination.