Development of the Cylindrical Wire Electrical Discharge Machining Process, Part 1: Concept, Design, and Material Removal Rate

Abstract
Results of applying the wire Electrical Discharge Machining (EDM) process to generate precise cylindrical forms on hard, difficult-to-machine materials are presented. The design of a precise, flexible, and corrosion-resistant underwater rotary spindle is first introduced. A detailed spindle error analysis identifies the major sources of error at different frequency spectrum. The spindle has been added to a conventional two-axis wire EDM machine to enable the generation of free-form cylindrical geometries. The mathematical model for material removal rate of the free-form cylindrical wire EDM process is derived. Experiments were conducted to explore the maximum material removal rate for cylindrical and 2D wire EDM of carbide and brass work-materials. Compared to the conventional 2D wire EDM of the same work-material, higher maximum material removal rates may be achieved in the cylindrical wire EDM, possibly due to better debris flushing condition.