Correlated Persistent Tunneling Currents in Glasses

Abstract
Low temperature properties of glasses are derived within a generalized tunneling model, considering the motion of charged particles on a closed path in a double-well potential. The presence of a magnetic induction field B violates the time reversal invariance due to the Aharonov-Bohm phase, and leads to flux periodic energy levels. At low temperature, this effect is shown to be strongly enhanced by dipole-dipole and elastic interactions between tunneling systems and becomes measurable. Thus, the recently observed strong sensitivity of the electric permittivity to weak magnetic fields can be explained. In addition, superimposed oscillations as a function of the magnetic field are predicted.