Abstract
This review covers a wide range of experimental and theoretical studies of two-level or tunnelling states in glasses. Emphasis is on fundamental physics rather than a detailed comparison of experiment and theory. Sections cover the static and dynamic properties of tunnelling states, their contribution to thermal properties and their response to weak and strong electric and acoustic fields, both steady state and pulsed. A section on metallic glasses focuses on the importance of electron tunnelling-state interactions, and a final section illustrates approaches to a microscopic description by means of selected examples.