G1 cyclin-dependent kinases are insufficient to reverse dE2F2-mediated repression

Abstract
Here we show that the cell cycle defects of dE2F1-depleted cells depend on the cooperative effects of dE2F2 and DACAPO (DAP), an inhibitor of Cyclin E/cyclin-dependent kinase 2 (CycE/cdk2). The different properties of cells lacking dE2F1/dE2F2 and dE2F1/DAP lead to the surprising observation that dE2F2-mediated repression differs from retinoblastoma family protein 1 (RBF1) inhibition of dE2F1, and is resistant to both CycE/cdk2 and Cyclin D/cyclin-dependent kinase 4 (CycD/cdk4). This resistance occurs even though dE2F2/RBF1 complexes are disrupted by CycE/cdk2, and may explain why dE2F2 is so potent in the absence ofde2f1. The implication of these results is that cells containing dE2F2 require dE2F1 to either prevent, or reverse, dE2F-mediated repression.