Abstract
A general (but realistic) self-gravitating degenerate quantum plasma system (SG-DQPS) containing inertialess degenerate electron species, inertial degenerate light, and heavy ion/nucleus species is considered to examine the possibility for the existence of degenerate pressure driven self-gravito-acoustic (DPD-SGA) solitary waves (SWs) formed in such a SG-DQPS. The pseudo-potential approach, which is valid for the arbitrary amplitude DPD-SGA SWs, is employed. It is found that depending on the value of the number density of heavy ion/nucleus species, the SG-DQPS under consideration supports the existence of positive or the coexistence of positive and negative DPD-SGA SWs. The basic features (polarity, amplitude, and width) of both positive and negative DPD-SGA SWs are found to be significantly modified by the dynamics of heavy ion/nucleus species. The theoretical investigation presented here is so general that it can be applied not only in astrophysical SG-DQPSs (such as white dwarf and neutron star SG-DQPSs), but also in laboratory SG-DQPSs (viz., solid density and laser-produced SG-DQPSs) to identify the salient features of the DPD-SGA SWs formed in them.