Electrical conductivity of synthetic DOPA-melanin polymer for different hydration states and temperatures

Abstract
The dependence of the d.c. conductivity on the hydration and temperature (293-343 K) for synthetic DOPA-melanin polymer is presented. The hydration state of the melanin has been changed by varying the humidity conditions around the sample. It has been shown, that in the range of relative humidity values (0-100%), changes in the hydration state of melanin have predominant influence on electrical conductivity (10-13-10 -5S cm-1) in comparison to temperature. The influence of the two forms of water on the conductivity-the first form adsorbed mainly on the melanin surface and easily removed by drying, and the second one incorporated into the inner structure of the polymer, has been investigated. The temperature dependence of the conductivity in vacuum (0.8 and 0.04 mb) and thermal activation energy values (0.49-0.76 eV) for cooling and heating curves have been determined. The relationship between thermal activation energy and preexponential factor σ0 (compensation effect) and possible charge transport mechanisms are discussed.