Heterogeneity in mammalian RNA 3′ end formation

Abstract
Precisely directed cleavage and polyadenylation of mRNA is a fundamental part of eukaryotic gene expression. Yet, 3′ end heterogeneity has been documented for thousands of mammalian genes, and usage of one cleavage and polyadenylation signal over another has been shown to impact gene expression in many cases. Building upon the rich biochemical and genetic understanding of the 3′ end formation, recent genomic studies have begun to suggest that widespread changes in mRNA cleavage and polyadenylation may be a part of large, dynamic gene regulatory programs. In this review, we begin with a modest overview of the studies that defined the mechanisms of mammalian 3′ end formation, and then discuss how recent genomic studies intersect with these more traditional approaches, showing that both will be crucial for expanding our understanding of this facet of gene regulation.