Proteophosophoglycans Regurgitated by Leishmania-Infected Sand Flies Target the L-Arginine Metabolism of Host Macrophages to Promote Parasite Survival

Abstract
All natural Leishmania infections start in the skin; however, little is known of the contribution made by the sand fly vector to the earliest events in mammalian infection, especially in inflamed skin that can rapidly kill invading parasites. During transmission sand flies regurgitate a proteophosphoglycan gel synthesized by the parasites inside the fly midgut, termed promastigote secretory gel (PSG). Regurgitated PSG can exacerbate cutaneous leishmaniasis. Here, we show that the amount of Leishmania mexicana PSG regurgitated by Lutzomyia longipalpis sand flies is proportional to the size of its original midgut infection and the number of parasites transmitted. Furthermore, PSG could exacerbate cutaneous L. mexicana infection for a wide range of doses (10–10,000 parasites) and enhance infection by as early as 48 hours in inflamed dermal air pouches. This early exacerbation was attributed to two fundamental properties of PSG: Firstly, PSG powerfully recruited macrophages to the dermal site of infection within 24 hours. Secondly, PSG enhanced alternative activation and arginase activity of host macrophages, thereby increasing L-arginine catabolism and the synthesis of polyamines essential for intracellular parasite growth. The increase in arginase activity promoted the intracellular growth of L. mexicana within classically activated macrophages, and inhibition of macrophage arginase completely ablated the early exacerbatory properties of PSG in vitro and in vivo. Thus, PSG is an essential component of the infectious sand fly bite for the early establishment of Leishmania in skin, which should be considered when designing and screening therapies against leishmaniasis. Parasites are known to manipulate their arthropod vectors for increased transmission, yet little is known about the manipulator-molecules involved. The protozoan parasite Leishmania secrete a proteophosphoglycan-rich gel (termed promastigote secretory gel, PSG) to block the sand fly midgut to force the regurgitation of parasites and gel into the skin. Here we show that the amount of PSG and dose of Leishmania transmitted by individual sand flies strongly correlate with the size of the original midgut infection. Regurgitated PSG exacerbated both low and high dose mouse infections, resulting from the gel's ability to augment the recruitment of its principal host cell, the macrophage, to the site of injury and induce the upregulation of macrophage arginase activity. The infecting parasites take advantage of the increased arginase-mediated L-arginine catabolism and the increased pool of polyamines available within these macrophages for their early nutrition and growth. This resulted in enhanced survival and growth of Leishmania in macrophages. Since arginase plays a crucial role in orchestrating wound repair in skin, it would appear that through the generation of PSG, Leishmania has evolved to exploit the wound response to the bite of the sand fly for its early survival.