Immunity to Distinct Sand Fly Salivary Proteins Primes the Anti-Leishmania Immune Response towards Protection or Exacerbation of Disease

Abstract
Leishmania parasites are transmitted in the presence of sand fly saliva. Together with the parasite, the sand fly injects biologically active salivary components that favorably change the environment at the feeding site. Exposure to bites or to salivary proteins results in immunity specific to these components. Mice immunized with Phlebotomus papatasi salivary gland homogenate (SGH) or pre-exposed to uninfected bites were protected against Leishmania major infection delivered by needle inoculation with SGH or by infected sand fly bites. Immunization with individual salivary proteins of two sand fly species protected mice from L. major infection. Here, we analyze the immune response to distinct salivary proteins from P. papatasi that produced contrasting outcomes of L. major infection. DNA immunization with distinct DTH-inducing salivary proteins from P. papatasi modulates L. major infection. PpSP15-immunized mice (PpSP15-mice) show lasting protection while PpSP44-immunized mice (PpSP44-mice) aggravate the infection, suggesting that immunization with these distinct molecules alters the course of anti-Leishmania immunity. Two weeks post-infection, 31.5% of CD4+ T cells produced IFN-γ in PpSP15-mice compared to 7.1% in PpSP44-mice. Moreover, IL-4-producing cells were 3-fold higher in PpSP44-mice. At an earlier time point of two hours after challenge with SGH and L. major, the expression profile of PpSP15-mice showed over 3-fold higher IFN-γ and IL-12-Rβ2 and 20-fold lower IL-4 expression relative to PpSP44-mice, suggesting that salivary proteins differentially prime anti-Leishmania immunity. This immune response is inducible by sand fly bites where PpSP15-mice showed a 3-fold higher IFN-γ and a 5-fold lower IL-4 expression compared with PpSP44-mice. Immunization with two salivary proteins from P. papatasi, PpSP15 and PpSP44, produced distinct immune profiles that correlated with resistance or susceptibility to Leishmania infection. The demonstration for the first time that immunity to a defined salivary protein (PpSP44) results in disease enhancement stresses the importance of the proper selection of vector-based vaccine candidates. In vector-borne diseases, the role of vectors has been overlooked in the search for vaccines. Nonetheless, there is a body of evidence showing the importance of salivary proteins of vectors in pathogen transmission. Leishmaniasis is a neglected vector-borne disease transmitted by sand flies. Pre-exposure to sand fly saliva or immunization with a salivary protein protected mice against cutaneous leishmaniasis. Using DNA immunization we investigated the immune response induced by abundant proteins within the saliva of the sand fly Phlebotomus papatasi. We found that one salivary protein protected while another exacerbated L. major infection, suggesting that the type of immune response induced by specific salivary proteins can prime and direct anti-Leishmania immunity. This stresses the importance of the proper selection of vector-based vaccine candidates. This work validates the powerful protection that can be acquired through vaccination with the appropriate salivary molecule and more importantly, shows that this protective immune response is efficiently recalled by sand fly bites, the natural route of transmission.