Abstract
Seventy-five years after its invention, transmission electron microscopy has taken a great step forward with the introduction of aberration-corrected electron optics. An entirely new generation of instruments enables studies in condensed-matter physics and materials science to be performed at atomic-scale resolution. These new possibilities are meeting the growing demand of nanosciences and nanotechnology for the atomic-scale characterization of materials, nanosynthesized products and devices, and the validation of expected functions. Equipped with electron-energy filters and electron-energy–loss spectrometers, the new instruments allow studies not only of structure but also of elemental composition and chemical bonding. The energy resolution is about 100 milli–electron volts, and the accuracy of spatial measurements has reached a few picometers. However, understanding the results is generally not straightforward and only possible with extensive quantum-mechanical computer calculations.