Reducing Thermal Resistance of AlGaN/GaN Electronic Devices Using Novel Nucleation Layers

Abstract
Currently, up to 50% of the channel temperature in AlGaN/GaN electronic devices is due to the thermal-boundary resistance (TBR) associated with the nucleation layer (NL) needed between GaN and SiC substrates for high-quality heteroepitaxy. Using 3-D time-resolved Raman thermography, it is shown that modifying the NL used for GaN on SiC epitaxy from the metal-organic chemical vapor deposition (MOCVD)-grown standard AlN-NL to a hot-wall MOCVD-grown AlN-NL reduces NL TBR by 25%, resulting in ~10% reduction of the operating temperature of AlGaN/GaN HEMTs. Considering the exponential relationship between device lifetime and temperature, lower TBR NLs open new opportunities for improving the reliability of AlGaN/GaN devices.