In vitro comparison of heliox and oxygen in aerosol delivery using pediatric high flow nasal cannula

Abstract
Drug administration via high flow nasal cannula (HFNC) has been described in pediatrics but the amount of albuterol delivery with an HFNC is not known. The purpose of this study is to quantify aerosol delivery with heliox and oxygen (O2) in a model of pediatric ventilation. A vibrating mesh nebulizer (Aeroneb Solo, Aerogen) was placed on the inspiratory inlet of a heated humidifier and heated wire circuit attached to a pediatric nasal cannula (Optiflow, Fisher & Paykel). Breathing parameters were tidal volume (Vt) 100 ml, respiratory rate (RR) 20/min, and I‐time of 1 sec. Albuterol sulfate (2.5 mg/3 ml) was administered through a pediatric HFNC with O2 (100%) and heliox (80/20% mixture). A total of 12 runs, using O2 and heliox were conducted at 3 and 6 L/min (n = 3). Drug was collected on an absolute filter, eluted and measured using spectrophotometry. The percent inhaled dose (mean ± SD) was similar with heliox and O2 at 3 L/min (11.41 ± 1.54 and 10.65 ± 0.51, respectively; P = 0.465). However at 6 L/min drug deposition was ≥2‐fold greater with heliox (5.42 ± 0.54) than O2 (1.95 ± 0.50; P = 0.01). Using a pediatric model of HFNC, reducing delivered flow from 6 to 3 L/min increased inhaled albuterol delivery ≥2‐fold but eliminated the increase in inhaled drug efficiency associated with heliox. Pediatr. Pulmonol. 2011; 46:795–801.