Development of universal and quadruplex real‐time RT‐PCR assays for simultaneous detection and differentiation of porcine reproductive and respiratory syndrome viruses

Abstract
Porcine reproductive and respiratory syndrome virus 1 (PRRSV1) and PRRSV2 (including 3 major subtypes: classical (CA‐PRRSV2), highly pathogenic (HP‐PRRSV2), and NADC30‐like (NL‐PRRSV2)) are currently coexisting in Chinese swine herds but with distinct virulence. Reliable detection and differentiation assays are crucial to monitor the prevalence of PRRSV and to adopt effective control strategies. However, current diagnostic methods cannot simultaneously differentiate the four major groups of PRRSV in China. In this study, universal and quadruplex real‐time RT‐PCR assays using TaqMan‐MGB probes were developed for simultaneous detection and differentiation of Chinese PRRSV isolates. The newly developed real‐time RT‐PCR assays exhibited good specificity, sensitivity, repeatability and reproducibility. In addition, the newly developed real‐time RT‐PCR assays were further validated by comparing with a universal PRRSV conventional RT‐PCR assay on the detection of 664 clinical samples collected from 2016 to 2019 in China. Based on the clinical performance, the agreements between the universal and quadruplex real‐time RT‐PCR assays and the conventional RT‐PCR assay were 99.55% and 99.40%, respectively. Totally 90 samples were detected as PRRSV positive, including 2 samples were determined to be co‐infected with NL‐PRRSV2 and HP‐PRRSV2 isolates by the quadruplex real‐time RT‐PCR assay. ORF5 sequencing confirmed the real‐time RT‐PCR results that 2, 6, 27 and 57 of the 92 sequences were PRRSV1, CA‐PRRSV2, NL‐PRRSV2 and HP‐PRRSV2, respectively. This study provides promising alternative tools for simultaneous detection and differentiation of PRRSV circulating in Chinese swine herds.
Funding Information
  • National Natural Science Foundation of China (31802172)
  • Natural Science Foundation of Jiangsu Province (BK20170492)
  • China Postdoctoral Science Foundation (2016M590510)

This publication has 26 references indexed in Scilit: