Turning Down the Heat: Design and Mechanism in Solid-State Synthesis

Abstract
Solid-state compounds have historically been prepared through high-temperature solid-solid reactions. New mechanistic understanding of these reactions suggests possible routes to metastable compositions and structures as well as to thermodynamically stable, low-temperature phases that decompose at higher temperatures. Intermediate-temperature synthetic techniques, including flux and hydrothermal methods, as well as low-temperature intercalation and coordination reactions, have recently been developed and have been used to prepare unprecedented materials with interesting electronic, optical, and catalytic properties. The trend in modern solid-state synthesis resembles increasingly the approach used in small-molecule chemistry, in the sense that attention to reaction mechanism and the use of molecular building blocks result in an ability to prepare new materials of designed structure.