Acoustic emission study of microcracking in 123-type ceramic superconductors

Abstract
Acoustic emission from sintered ceramic YBa2Cu3O7−x (YBCO) superconductor pellets provides a direct measure of microcracking behavior during processing. By detection and statistical analysis of acoustic events, the effects of cooling rates, processing atmosphere, average grain size, additives, and grain alignment on microcracking in YBCO have been studied. The onset temperature and duration of acoustic emission during cooling correlate well with the oxygen partial pressure in the furnace. Rapid changes in oxygen partial pressure at constant temperature produce acoustic emission that is characteristic of microcracking. A reported critical grain size for microcracking in sintered polycrystalline YBCO of about 1 μm has been confirmed. Two superconducting compounds, YSrBaCu3O7−x and LaBaCaCu3O7−x with the 123 structure but with smaller crystallographic anisotropy were also examined. Recommendations are made for minimizing microcracking during processing of superconducting ceramics.