Identification of Novel Target Genes of the Bone-Specific Transcription Factor Runx2

Abstract
The transcription factor Runx2 is a key regulator of osteoblast development and plays a role in chondrocyte maturation. The identification of transcriptional target genes of Runx2 may yield insight into how osteoblastic differentiation is achieved on a molecular level. Using a differential hybridization technique (selective amplification through biotin and restriction-mediated enrichment [SABRE]) and cDNA microarray analysis, 15 differentially expressed genes were identified using mRNA from C3H 10Tl/2 cells with constitutive and inducible overexpression of Runx2. Among the 15 genes identified, 4 encode the extracellular matrix proteins Ecml, Mgp, Fbn5, and Osf-2, three represent the transcription factors Esxl, Osrl, and Sox9, whereas others were Ptn, Npdc-1, Higl, and Tem l. The gene for Pttg1ip was upregulated in Runx2-expressing cells. Pttg1ip is widely expressed during development, but at highest levels in limbs and gonads. The Pttg1ip promoter binds Runx2 in a sequence specific manner, and Runx2 is able to transactivate the Pttg lip promoter in MC3T3-El cells. Therefore, Pttg1ip is likely tobe a novel direct transcriptional target gene of Runx2. In conclusion, the genes identified in this study are important candidates for mediating Runx2 induced cellular differentiation.