Mis-Spliced Transcripts of Nicotinic Acetylcholine Receptor α6 Are Associated with Field Evolved Spinosad Resistance in Plutella xylostella (L.)

Abstract
The evolution of insecticide resistance is a global constraint to agricultural production. Spinosad is a new, low-environmental-risk insecticide that primarily targets nicotinic acetylcholine receptors (nAChR) and is effective against a wide range of pest species. However, after only a few years of application, field evolved resistance emerged in the diamondback moth, Plutella xylostella, an important pest of brassica crops worldwide. Spinosad resistance in a Hawaiian population results from a single incompletely recessive and autosomal gene, and here we use AFLP linkage mapping to identify the chromosome controlling resistance in a backcross family. Recombinational mapping with more than 700 backcross progeny positioned a putative spinosad target, nAChR alpha 6 (Pxα6), at the resistance locus, PxSpinR. A mutation within the ninth intron splice junction of Pxα6 results in mis-splicing of transcripts, which produce a predicted protein truncated between the third and fourth transmembrane domains. Additional resistance-associated Pxα6 transcripts that excluded the mutation containing exon were detected, and these were also predicted to produce truncated proteins. Identification of the locus of resistance in this important crop pest will facilitate field monitoring of the spread of resistance and offer insights into the genetic basis of spinosad resistance in other species. Evolving resistance to control agents, such as antibiotics or insecticides, can have major costs to human health or agricultural food production. Once a genetic mechanism for resistance to a particular compound has been identified, other resistant species can be rapidly assessed to search for a parallel mechanism. Insecticides often target the insect nervous system as they can be toxic at low concentration and act rapidly. Here we report a genetic mutation in a global agricultural pest, diamondback moth, that is associated with resistance to the bioinsecticide spinosad. A mutation in an intron splice junction of nicotinic acetylcholine receptor (nAChR) alpha 6 causes mis-spliced mRNA transcripts that are predicted to produce truncated proteins lacking important functional domains. nAChRs require 5 subunits to function, and insects generally encode 10–12 subunit genes. Spinosad may therefore be targeting a redundant nAChR subunit not essential for survival in diamondback moth. Other insects that evolve field resistance to spinosad can now be tested to determine whether the same resistance mechanism is involved.