Uptake of unnatural trehalose analogs as a reporter for Mycobacterium tuberculosis

Abstract
The use of synthetic analogs to explore substrate promiscuity during trehalose incorporation into the mycobacterial cell wall yields a fluorescent probe that can be used to examine M. tuberculosis cell biology and detect this harmful pathogen within macrophages. The detection of tuberculosis currently relies upon insensitive and unspecific techniques; newer diagnostics would ideally co-opt specific bacterial processes to provide real-time readouts. The trehalose mycolyltransesterase enzymes (antigens 85A, 85B and 85C (Ag85A, Ag85B, Ag85C)) serve as essential mediators of cell envelope function and biogenesis in Mycobacterium tuberculosis. Through the construction of a systematically varied sugar library, we show here that Ag85 enzymes have exceptionally broad substrate specificity. This allowed exogenously added synthetic probes to be specifically incorporated into M. tuberculosis growing in vitro and within macrophages. Even bulky substituents, such as a fluorescein-containing trehalose probe (FITC-trehalose), were incorporated by growing bacilli, thereby producing fluorescent bacteria; microscopy revealed selective labeling of poles and membrane. Addition of FITC-trehalose to M. tuberculosis–infected macrophages allowed selective, sensitive detection of M. tuberculosis within infected mammalian macrophages. These studies suggest that analogs of trehalose may prove useful as probes of function and for other imaging modalities.