Thermal conductivity of biaxial-strained MoS2: sensitive strain dependence and size-dependent reduction rate

Abstract
The effect of biaxial tensile strain on the thermal transport properties of MoS2 is investigated by combining first-principles calculations and the Boltzmann transport equation. The thermal conductivities of single layer MoS2 are found to be heavily suppressed by the applied strains; even a moderate biaxial tensile strain, 2 ~ 4%, could result in a 10 ~ 20% reduction in the thermal conductivity. Most interestingly, the reduction rate of thermal conductivity is size-dependent, which is due to different dominant phonon scattering mechanisms at different sizes of MoS2 samples. The sensitive strain dependence of thermal conductivity indicates that strain engineering could be an effective method to enhance the figure of merit for thermoelectric applications of MoS2.