Prostate MR imaging at high-field strength: evolution or revolution?

Abstract
As 3 T MR scanners become more available, body imaging at high field strength is becoming the subject of intensive research. However, little has been published on prostate imaging at 3 T. Will high-field imaging dramatically increase our ability to depict and stage prostate cancer? This paper will address this question by reviewing the advantages and drawbacks of body imaging at 3 T and the current limitations of prostate imaging at 1.5 T, and by detailing the preliminary results of prostate 3 T MRI. Even if slight adjustments of imaging protocols are necessary for taking into account the changes in T1 and T2 relaxation times at 3 T, tissue contrast in T2-weighted (T2w) imaging seems similar at 1.5 T and 3 T. Therefore, significant improvement in cancer depiction in T2w imaging is not expected. However, increased spatial resolution due to increased signal-to-noise ratio (SNR) may improve the detection of minimal capsular invasion. Higher field strength should provide increased spectral and spatial resolution for spectroscopic imaging, but new pulse sequences will have to be designed for overcoming field inhomogeneities and citrate J-modulation issues. Finally, dynamic contrast-enhanced MRI is the method of imaging that is the most likely to benefit from the increased SNR, with a significantly better trade-off between temporal and spatial resolution.

This publication has 76 references indexed in Scilit: