Magnetic Resonance Imaging Investigation of Axonal Remodeling and Angiogenesis after Embolic Stroke in Sildenafil-Treated Rats

Abstract
Interaction between angiogenesis and axonal remodeling after stroke was dynamically investigated by MRI in rats with or without sildenafil treatments. Male Wistar rats were subjected to embolic stroke and treated daily with saline ( n = 10) or with sildenafil ( n = 11) initiated at 24 h and subsequently for 7 days after onset of ischemia. T*2-weighted imaging, cerebral blood flow (CBF), and diffusion tensor imaging (DTI) measurements were performed from 24 h to 6 weeks after embolization. T*2 and fractional anisotropy (FA) maps detected angiogenesis and axonal remodeling after stroke, respectively, starting from 1 week in sildenafil-treated rats. Areas demarcated by MRI with enhanced angiogenesis, elevated local CBF, and augmented axonal remodeling were spatially and temporally matched, and FA values were significantly correlated with the corresponding CBF values ( R = 0.66, P < 4 × 10−5) at 6 weeks after stroke. Axonal projections were reorganized along the ischemic boundary after stroke. These MRI measurements, confirmed by histology, showed that sildenafil treatment simultaneously enhanced angiogenesis and axonal remodeling, which were MRI detectable starting from 1 week after stroke in rats. The spatial and temporal consistency of MRI metrics and the correlation between FA and local CBF suggest that angiogenesis, by elevating local CBF, promotes axonal remodeling after stroke.