Abstract
A transport theory which allows for anisotropy in the scattering processes is developed for semiconductors with multiple nondegenerate band edge points. It is found that the main effects of scattering on the distribution function over each ellipsoidal constant-energy surface can be described by a set of three relaxation times, one for each principal direction; these are the principal components of an energy-dependent relaxation-time tensor. This approximate solution can be used if all scattering processes either conserve energy or randomize velocities. Expressions for mobility, Hall effect, low- and high-field magnetoresistance, piezoresistance, and high-frequency dielectric constant are derived in terms of the relaxation-time tensor. For static-field transport properties the effect of anisotropic scattering is merely to weight each component of the effective-mass tensor, as it appears in the usual theory, with the reciprocal of the corresponding component of the relaxation-time tensor.