Ion cyclotron range of frequencies heating and flow generation in deuterium–tritium plasmas

Abstract
Recent radio-frequency heating experiments on the Tokamak Fusion Test Reactor (TFTR) [Hawryluk et al., Plasma Phys. Controlled Fusion 33, 1509 (1991)] have focused on developing tools for both pressure and current profile control in deuterium–tritium (DT) plasmas. A new antenna was added to investigate pressure profile control utilizing direct ion Bernstein wave (IBW) heating. This was the first time direct IBW heating was explored on TFTR. Plasma heating and driven poloidal flows are observed. Previously heating and current drive via mode-converted IBW waves had been demonstrated in non-DT plasmas but efforts in DT plasmas had been unsuccessful. This lack of success had been ascribed to the presence of a small 7Li minority ion population. In the most recent experiments 6Li was used exclusively for machine conditioning and mode-conversion heating consistent with theory is now observed in DT plasmas.