Introduction to flash memory

Abstract
This paper mainly focuses on the development of the NOR flash memory technology, with the aim of describing both the basic functionality of the memory cell used so far and the main cell architecture consolidated today. The NOR cell is basically a floating-gate MOS transistor, programmed by channel hot electron and erased by Fowler-Nordheim tunneling. The main reliability issues, such as charge retention and endurance, are discussed, together with an understanding of the basic physical mechanisms responsible. Most of these considerations are also valid for the NAND cell, since it is based on the same concept of floating-gate MOS transistor. Furthermore, an insight into the multilevel approach, where two bits are stored in the same cell, is presented. In fact, the exploitation of the multilevel approach at each technology node allows an increase of the memory efficiency, almost doubling the density at the same chip size, enlarging the application range and reducing the cost per bit. Finally, NOR flash cell scaling issues are covered, pointing out the main challenges. Flash cell scaling has been demonstrated to be really possible and to be able to follow Moore's law down to the 130-nm technology generations. Technology development and consolidated know-how is expected to sustain the scaling trend down to 90- and 65-nm technology nodes. One of the crucial issues to be solved to allow cell scaling below the 65-nm node is the tunnel oxide thickness reduction, as tunnel thinning is limited by intrinsic and extrinsic mechanisms.

This publication has 28 references indexed in Scilit: