Joint Optimization of Electric Vehicle and Home Energy Scheduling Considering User Comfort Preference

Abstract
In this paper, we investigate the joint optimization of electric vehicle (EV) and home energy scheduling. Our objective is to minimize the total electricity cost while considering user comfort preference. We take both household occupancy and EV travel patterns into account. The novel contributions of this paper lie in the exploitation of EVs as dynamic storage facility as well as detailed modeling of user comfort preference, thermal dynamics, EV travel, and customer occupancy patterns in a concrete optimization framework. Extensive numerical results are presented to illustrate the efficacy of the proposed design. Specifically, we show that the proposed design can achieve significant saving in electricity cost, allow more flexibility in setting the tradeoff between cost and user comfort, and enable to reduce energy demand during peak hours. We also demonstrate the benefits of applying the proposed framework to a residential community compared to optimization of individual household separately.