On the microwave reflectivity of small-scale breaking water waves

Abstract
The aim of this paper is to elucidate the microwave reflectivity properties of small-scale breaking water waves, which are a widespread feature of the wind-driven air-sea interface. By using a laboratory wave flume in which a small-scale breaking wave was held stationary against an opposing current, a detailed investigation of the microwave reflectivity at X-band revealed significantly enhanced levels of local backscattered power from the crest regions of small-scale breaking waves. A surprising level of organization is discovered in the hydrodynamic disturbances generated in such breaking zones. Their wavenumber-frequency spectral properties are reported in detail, from which it is concluded that the microwave reflectivity is consistent with Bragg scattering from these disturbances. The application of these findings to active microwave remote sensing of the oceans is discussed.

This publication has 8 references indexed in Scilit: