Abstract
Systematic measurements of drift currents below and of airflows above an air-water interface have been made under various wind conditions. The current near but not immediately below the water surface is found to follow a Kármán-Prandtl (logarithmic) velocity distribution. The current immediately below the water surface varies linearly with depth. The transitions of the current boundary layer to various regimes appear to lag behind, or to occur a t a higher wind velocity than, those of the airflow. The fraction of the wind stress supported by the wave drag seems to vary with the wind and wave conditions: a large fraction is obtained at low wind velocities with shorter waves and a small fraction is obtained a t high wind velocities with longer waves. At the air-water interface, the wind-induced current is found to be proportional to the friction velocity of the wind. The Stokes mass transport, related to wave characteristics, is only a small component of the surface drift in laboratory tanks. However, in terms of the fraction of the wind velocity, the mass transport increases, while the wind drift decreases, as the fetch increases. The ratio between the total surface drift and the wind velocity decreases gradually as the fetch increases and approaches a constant value of about 3·5% at very long fetches.

This publication has 15 references indexed in Scilit: