Highly stretchable polymer semiconductor films through the nanoconfinement effect

Abstract
Trapping polymers to improve flexibility: Polymer molecules at a free surface or trapped in thin layers or tubes will show different properties from those of the bulk. Confinement can prevent crystallization and oddly can sometimes give the chains more scope for motion. Xu et al. found that a conducting polymer confined inside an elastomer—a highly stretchable, rubber-like polymer—retained its conductive properties even when subjected to large deformations (see the Perspective by Napolitano). Science , this issue p. 59 ; see also p. 24