ORC-dependent and origin-specific initiation of DNA replication at defined foci in isolated yeast nuclei.

Abstract
We describe an in vitro replication assay from yeast in which the addition of intact nuclei to an S-phase nuclear extract results in the incorporation of deoxynucleotides into genomic DNA at spatially discrete foci. When BrdUTP is substituted for dTTP, part of the newly synthesized DNA shifts to a density on CsCl gradients, indicative of semiconservative replication. Initiation occurs in an origin-specific manner and can be detected in G1- or S-phase nuclei, but not in G2-phase or mitotic nuclei. The S-phase extract contains a heat- and 6-DMAP-sensitive component necessary to promote replication in G1-phase nuclei. Replication of nuclear DNA is blocked at the restrictive temperature in an orc2-1 mutant, and the inactive Orc2p cannot be complemented in trans by an extract containing wild-type ORC. The initiation of DNA replication in cln-deficient nuclei blocked in G1 indicates that the ORC-dependent prereplication complex is formed before Start. This represents the first nonviral and nonembryonic replication system in which DNA replication initiates in an ORC-dependent and origin-specific manner in vitro.