A Mitogen-Activated Protein Kinase Cascade in the CA1/CA2 Subfield of the Dorsal Hippocampus Is Essential for Long-Term Spatial Memory

Abstract
Behavioral, biophysical, and pharmacological studies have implicated the hippocampus in the formation and storage of spatial memory. However, the molecular mechanisms underlying long-term spatial memory are poorly understood. In this study, we show that mitogen-activated protein kinase (MAPK, also called ERK) is activated in the dorsal, but not the ventral, hippocampus of rats after training in a spatial memory task, the Morris water maze. The activation was expressed as enhanced phosphorylation of MAPK in the pyramidal neurons of the CA1/CA2 subfield. In contrast, no increase in the percentage of phospho-MAPK-positive cells was detected in either the CA3 subfield or the dentate gyrus. The enhanced phosphorylation was observed only after multiple training trials but not after a single trial or after multiple trials in which the location of the target platform was randomly changed between each trial. Inhibition of the MAPK/ERK cascade in dorsal hippocampi did not impair acquisition, but blocked the formation of long-term spatial memory. In contrast, intrahippocampal infusion of SB203580, a specific inhibitor of the stress-activated MAPK (p38 MAPK), did not interfere with memory storage. These results demonstrate a MAPK-mediated cellular event in the CA1/CA2 subfields of the dorsal hippocampus that is critical for long-term spatial memory.