Extending the DSRC's control channel using cognitive networking concepts and Fuzzy Logic

Abstract
Wireless Access in Vehicular Environments (WAVE) protocol stack is the most important protocol used to allocate spectrum for vehicular communication. The capabilities of WAVE to provide reliable exchange of safety information are questionable. In a previous work, we suggested a system that employs cognitive networks principles to increase the spectrum allocated to the control channel (CCH) by the IEEE 802.11p amendment, where all safety information is transmitted. However, the decision making process implemented in that work does not differentiate between contention levels and does not relate precisely the measured contention to the amount of needed spectrum, which leads to an inefficient utilization of the white spectrum. In order to assign the minimum necessary additional bandwidth to relieve the contention, we suggest in this paper a new system that quantifies contention into multiple levels of severity based on Fuzzy Logic and maps additional spectrum correspondingly. Simulations show the effectiveness of the system in allocating the minimum needed bandwidth to relieve contention, without affecting other QoS parameters such as delay and number of untransmitted packets.

This publication has 14 references indexed in Scilit: