11-Gb/s 80-km transmission performance of zero-chirp silicon Mach-Zehnder modulator.

Abstract
The 11-Gbps 80-km transmission performance of a zero-chirp silicon Mach–Zehnder modulator has been characterized. The zero-chirp characteristic of the silicon modulator is confirmed in the constellation measurement, and gives high tolerance both for positive and negative chromatic dispersion. A low-dispersion-penalty transmission up to 80km using the 11-Gbps non return-to-zero on-off-keying format is confirmed via bit-error-rate measurements with a performance comparable to that of a commercial lithium-niobate modulator. The dispersion tolerance at 2-dB power penalty for a bit-error-rate of 10−3 is more than ± 950 ps/nm. Further, 22.3-Gbps binary phase-shift-keying is demonstrated, and the back-to-back power penalty with respect to the lithium-niobate modulator is less than 0.5dB.