The phosphorylation status and anti‐apoptotic activity of Bcl‐2 are regulated by ERK and protein phosphatase 2A on the mitochondria

Abstract
Bcl-2 protein play important roles in the regulation of apoptosis. We previously reported that the phosphorylation of Bcl-2 was augmented by treatment with protein phosphatase 2A (PP2A) inhibitor; however, the kinase responsible for Bcl-2 phosphorylation had not yet been identified. In this study, we identified extracellular-signal-regulated kinase (ERK) as the responsible kinase for the phosphorylation of Bcl-2. We also found that the transmembrane region (TM) deleted form of Bcl-2 (Bcl-2DeltaTM), which was unable to localize on the mitochondria was constitutively phosphorylated, whereas wild-type Bcl-2 that localized on the mitochondria, was present in its hypophosphorylated form. The phosphorylation of Bcl-2DeltaTM was retarded by treatment with MAP kinase ERK kinase (MEK) inhibitor and PP2A did not bind to Bcl-2DeltaTM. These observations suggest that Bcl-2DeltaTM is constitutively phosphorylated by ERK, but is not dephosphorylated by PP2A in human tumor cell lines. The phosphorylation of Bcl-2 resulted in a reduction in anti-apoptotic function, implying that dephosphorylation promoted the anti-apoptotic activity of Bcl-2 protein in human tumor cell lines. Thus, the present findings suggest that ERK and PP2A are physiological regulators of Bcl-2 phosphorylation, and these enzymes exert an influence on the anti-apoptotic function of Bcl-2.