Phase and amplitude uncertainties in heterodyne detection

Abstract
The quantum limits on simultaneous phase and squared-amplitude measurements made via optical heterodyne detection on a single-mode radiation field are established. The analysis proceeds from a fully quantum mechanical treatment of heterodyning with ideal photon detectors. A high mean field uncertainty principle is proven for simultaneous phase and squared-amplitude observations under the condition that the signal and image band states are independent, and the image band has zero mean. Operator representations are developed which show that no such principle applies when arbitrary signal/image band dependence is permitted, although the mean observations are no longer functions of the signal field alone. A multimode two-photon coherent state illustrating this behavior at finite energy is exhibited. Potential applications for the resulting improved accuracy measurements are briefly described.