Design of Wearable Power Assist Wear for Low Back Support Using Pneumatic Actuators

Abstract
This research focuses on developing a safe, lightweight, power assist device that can be worn by people during lifting or static holding tasks to prevent them from experiencing Low Back Pain (LBP). In consideration of their flexibility, light weight, and large force to weight ratio, two types of pneumatic actuators are employed in assisting low back movement for their safety and comfort. Actuator A is an elongation-type pneumatic rubber artificial muscle that is installed in the outer layer of the garment. Its two ends are fixed on the shoulders and thighs. It can output contractile force, assisting the erector spinae muscles in the same direction. Compared to McKibben-type pneumatic rubber artificial muscle, the elongation type has a larger contraction rate. Actuator B is a layer-type of pneumatic actuator; it is composed of two balloons, and it is installed in the inner layer of the garment. By taking into account the biomechanic structure of the human spine, this device can provide support in two ways. Actuator A acts as an external muscle power generators to reduce the force requirement for the erector spinae muscles. As actuator B acts as a moment arm of the contractile force generated by actuator A, it will increase the effective amount of torque. The device can be worn directly on the body like normal clothing. Because there is no rigid exoskeleton frame structure, it is lightweight and user friendly. The system’s Inertial Measurement Unit (IMU), composed of accelerometer sensors and gyro sensors to measure the human motion signals, can monitor the angles of the human body in real-time mode. By measuring the EMG signal of the human erector spinae muscles, the assistance effectiveness of the proposed device has been proven through experiments.