Antitumour drug–DNA interactions: NMR studies of echinomycin and chromomycin complexes

Abstract
The intelligent design of new families of DNA-binding antitumour agents must await an understanding at the molecular level of the structure, dynamics and energetics of drug-DNA interactions on currently available systems. Recent progress in this area has been significant and reflects the interplay between footprinting methods that identify the sequence specificity of drug binding, structural approaches that define conformational features in the crystalline and solution states, hydrogen exchange techniques that monitor transient base pair opening and calorimetric methods that partition the enthalpic and entropic contributions to the binding isotherm.