MAP estimation with structural priors for fluorescence molecular tomography

Abstract
Fluorescence molecular tomography (FMT) is an attractive imaging tool for quantitatively and three-dimensionally resolving fluorophore distributions in small animals, but it suffers from low spatial resolution due to its inherent ill-posed nature. Structural priors obtained from a secondary modality system such as x-ray computed tomography or magnetic resonance imaging can help to improve FMT reconstruction results. However, challenge remains in how to fully take advantage of the structural priors while effectively avoid undesirable influence caused by an immoderate usage. In this paper, we propose a new method to resolve the FMT inverse problem based on maximum a posteriori (MAP) estimation with structural priors (MAP-SP) in a Bayesian framework. Instead of imposing the structural priors directly on the reconstruction results, the MAP-SP method utilizes them to constrain the unknown hyperparameters of the prior information model which is essential for the Bayesian framework. Then, a low dimensional inverse problem and an alternating optimization scheme are used to automatically calculate the unknown hyperparameters, which make the FMT reconstruction process self-adaptive. Simulation and phantom results show that the proposed MAP-SP method can effectively make use of the structural priors and leads to improvements in reconstruction quality as compared with traditional regularization methods.