Spatially varying regularization based on spectrally resolved fluorescence emission in fluorescence molecular tomography

Abstract
Fluorescence molecular tomography suffers from being mathematically ill-conditioned resulting in non-unique solutions to the reconstruction problem. In an attempt to reduce the number of possible solutions in the underdetermined system of equations in the reconstruction, we present a method to retrieve a spatially varying regularization map outlining the feasible inclusion position. This approach can be made very simple by including a few multispectral recordings from only one source position. The results retrieved through tissue phantom experiments imply that initial reconstructions with spatially varying priors reduces artifacts and show slightly more accurate reconstruction results compared to reconstructions using no priors.