Electrical effects of plasma damage in p-GaN

Abstract
The reverse breakdown voltage of p-GaN Schottky diodes was used to measure the electrical effects of high density Ar or H2 plasma exposure. The near surface of the p-GaN became more compensated through introduction of shallow donor states whose concentration depended on ion flux, ion energy, and ion mass. At high fluxes or energies, the donor concentration exceeded 1019cm−3 and produced p-to-n surface conversion. The damage depth was established as ∼400 Å based on electrical and wet etch rate measurements. Rapid thermal annealing at 900 °C under a N2 ambient restored the initial electrical properties of the p-GaN.