Reconfigurable and actuating structures from soft materials

Abstract
The recent interest in reconfigurable soft materials may lead to the next paradigm in the development of adaptive and actuating materials and structures. Actuating soft materials eventually can be precisely designed to show stimuli-sensing, multi-length scale actuation, tunable transport, programmed shape control and multifunctional orthogonal responses. Herein, we discuss the various advances in the emerging field of reconfigurable soft materials with a focus on the various parameters that can be modulated to control a complex system behavior. In particular, we detail approaches that use either long-range fields (i.e. electrical, magnetic) or changes in local thermodynamic parameters (e.g., solvent quality) in order to elicit a precise dimensional and controlled response. The theoretical underpinnings and practical considerations for different approaches are briefly presented alongside several illustrative examples from the recent studies. In the end, we summarize recent accomplishments, critical issues to consider, and give perspectives on the developments of this exciting research field.