Abstract
Staphylococcus aureus is a leading cause of food poisoning worldwide due to the production of heat-stable enterotoxins. Recently, the isolation of methicillin-resistant S. aureus (MRSA) from food animals and retail meats raised additional food safety concerns. In this study, we characterized 152 S. aureus isolates, including 22 MRSA recovered from Louisiana retail pork and beef meats, for the prevalence of nine enterotoxin and four other exotoxin genes by polymerase chain reaction and antimicrobial susceptibility testing by broth microdilution. Overall, 85% of S. aureus isolates were positive for at least one of six enterotoxin genes identified and 66% harbored two to four enterotoxin genes. The two most predominant ones were seg and sei (66% each), followed by seh (20%), sed (15%), sej (13%), and sea (1%). No isolates harbored enterotoxin genes seb, sec, or see, the toxic shock syndrome toxin 1 gene tst, or the exfoliative toxin genes eta or etb. Three MRSA isolates were the only ones harboring Panton-Valentine leucocidin. Resistances were common to penicillin (71%), ampicillin (68%), and tetracycline (67%), followed by erythromycin (30%), clindamycin (18%), oxacillin with 2% NaCl (14%), ciprofloxacin (13%), levofloxacin (13%), gentamicin (3%), quinupristin/dapfopristin (3%), chloramphenicol (2%), and moxifloxacin (1%). Multidrug resistance was commonly observed among MRSA isolates and S. aureus isolates from pork. This study demonstrated that S. aureus isolates found in Louisiana retail pork and beef meats possessed various enterotoxin genes and antimicrobial resistance profiles. Therefore, vigilant food safety practice needs to be implemented for people who handle raw meat products to prevent foodborne infections and intoxications due to S. aureus contamination.

This publication has 40 references indexed in Scilit: