Genome Sequence of the Streptomycin-Producing MicroorganismStreptomyces griseusIFO 13350

Abstract
We determined the complete genome sequence ofStreptomyces griseusIFO 13350, a soil bacterium producing an antituberculosis agent, streptomycin, which is the first aminoglycoside antibiotic, discovered more than 60 years ago. The linear chromosome consists of 8,545,929 base pairs (bp), with an average G+C content of 72.2%, predicting 7,138 open reading frames, six rRNA operons (16S-23S-5S), and 66 tRNA genes. It contains extremely long terminal inverted repeats (TIRs) of 132,910 bp each. The telomere's nucleotide sequence and secondary structure, consisting of several palindromes with a loop sequence of 5′-GGA-3′, are different from those of typical telomeres conserved among otherStreptomycesspecies. In accordance with the difference, the chromosome has pseudogenes for a conserved terminal protein (Tpg) and a telomere-associated protein (Tap), and a novel pair of Tpg and Tap proteins is instead encoded by the TIRs. Comparisons with the genomes of two related species,Streptomyces coelicolorA3(2) andStreptomyces avermitilis, clarified not only the characteristics of theS. griseusgenome but also the existence of 24Streptomyces-specific proteins. TheS. griseusgenome contains 34 gene clusters or genes for the biosynthesis of known or unknown secondary metabolites. Transcriptome analysis using a DNA microarray showed that at least four of these clusters, in addition to the streptomycin biosynthesis gene cluster, were activated directly or indirectly by AdpA, which is a central transcriptional activator for secondary metabolism and morphogenesis in the A-factor (a γ-butyrolactone signaling molecule) regulatory cascade inS. griseus.