The DNA demethylase ROS1 targets genomic regions with distinct chromatin modifications

Abstract
The Arabidopsis ROS1/DEMETER family of 5-methylcytosine (5mC) DNA glycosylases are the first genetically characterized DNA demethylases in eukaryotes. However, the features of ROS1-targeted genomic loci are not well understood. In this study, we characterized ROS1 target loci in Arabidopsis Col-0 and C24 ecotypes. We found that ROS1 preferentially targets transposable elements (TEs) and intergenic regions. Compared with most TEs, ROS1-targeted TEs are closer to protein coding genes, suggesting that ROS1 may prevent DNA methylation spreading from TEs to nearby genes. ROS1-targeted TEs are specifically enriched for H3K18Ac and H3K27me3, and depleted of H3K27me and H3K9me2. Importantly, we identified thousands of previously unknown RNA-directed DNA methylation (RdDM) targets following depletion of ROS1, suggesting that ROS1 strongly antagonizes RdDM at these loci. In addition, we show that ROS1 also antagonizes RdDM-independent DNA methylation at some loci. Our results provide important insights into the genome-wide targets of ROS1 and the crosstalk between DNA methylation and ROS1-mediated active DNA demethylation.